323 research outputs found

    Multifidelity Uncertainty Quantification of a Commercial Supersonic Transport

    Get PDF
    The objective of this work was to develop a multifidelity uncertainty quantification approach for efficient analysis of a commercial supersonic transport. An approach based on non-intrusive polynomial chaos was formulated in which a low-fidelity model could be corrected by any number of high-fidelity models. The formulation and methodology also allows for the addition of uncertainty sources not present in the lower fidelity models. To demonstrate the applicability of the multifidelity polynomial chaos approach, two model problems were explored. The first was supersonic airfoil with three levels of modeling fidelity, each capturing an additional level of physics. The second problem was a commercial supersonic transport. This model had three levels of fidelity that included two different modeling approaches and the addition of physics between the fidelity levels. Both problems illustrate the applicability and significant computational savings of the multifidelity polynomial chaos method

    Trim Flight Conditions for a Low-Boom Aircraft Design Under Uncertainty

    Get PDF
    The purpose of this paper is to investigate the noise generation of a low-boom aircraft design in flight trim conditions under uncertainty. The deflection of control surfaces to maintain a trimmed flight state has the potential to change the perceived loudness at the ground. Furthermore, the uncertainties associated with the control surface deflections can complicate the overall uncertainty quantification. Incorporation of the uncertainties in the prediction of perceived sound levels during the design phase can lead to improved robustness. In this paper, a brief review of low-boom flight trim research is presented. Realistic flight trim conditions requiring control surface deflection are integrated into the current research efforts for uncertainty quantification and vehicle design. In addition, a generalized set of procedures for the characterization of uncertainties in flight trim conditions are introduced. In a case study of the application of these procedures, a 5 decibel average difference in the perceived level of loudness was found between clean (no deflections) and trimmed configurations. Also, uncertainties attributable to control surface deflection were found to account for, on average, over 50% of the total near field uncertainty. Uncertainty discretization methods implemented were able to give more insight into the overall global variances

    Calibration Probe Uncertainty and Validation for the Hypersonic Material Environmental Test System

    Get PDF
    This paper presents an uncertainty analysis of the stagnation-point calibration probe surface predictions for conditions that span the performance envelope of the Hypersonic Materials Environmental Test System facility located at NASA Langley Research Center. A second-order stochastic expansion was constructed over 47 uncertain parameters to evaluate the sensitivities, identify the most significant uncertain variables, and quantify the uncertainty in the stagnation-point heat flux and pressure predictions of the calibration probe for a low- and high-enthalpy test condition. A sensitivity analysis showed that measurement bias uncertainty is the most significant contributor to the stagnation-point pressure and heat flux variance for the low-enthalpy condition. For the high-enthalpy condition, a paradigm shift in sensitivities revealed the computational fluid dynamics model input uncertainty as the main contributor. A comparison between the prediction and measurement of the stagnation-point conditions under uncertainty showed that there was evidence of statistical disagreement. A validation metric was proposed and applied to the prediction uncertainty to account for the statistical disagreement when compared to the possible stagnation-point heat flux and pressure measurements

    Reliability-Based Design of Thermal Protection Systems with Support Vector Machines

    Get PDF
    The primary objective of this work was to develop a computationally efficient and accurate approach to reliability analysis of thermal protection systems using support vector machines. An adaptive sampling approach was introduced informs a iterative support vector machine approximation of the limit state function used for measuring reliability. The proposed sampling approach efficient adds samples along the limit state function until the reliability approximation is converged. This methodology is applied to two samples, mathematical functions to test and demonstrate the applicability. Then, the adaptive sampling-based support vector machine approach is applied to the reliability analysis of a thermal protection system. The results of all three problems highlight the potential capability of the new approach in terms of accuracy and computational saving in determining thermal protection system reliability

    Aeroelastic Uncertainty Quantification of a Low-Boom Aircraft Configuration

    Get PDF
    As the state of the art in uncertainty quantification for low-boom aircraft advances, the underlying assumption of a rigid airframe must be revisited. The goal of this research is to investigate the impact of uncertainties in aeroelastic deformation of a low-boom aircraft on ground noise. Variations in structural properties and uncertainties in loading, derived from flight conditions, both factor into the overall aeroelastic deformation and subsequently the ground noise. Incorporation of these aeroelastic uncertainties in the prediction of ground noise during the design phase can lead to improved robustness. In this paper, a review of methodologies and techniques employed in low-boom uncertainty quantification will be given. In addition, methods for aeroelastic uncertainty quantification are integrated into the previous work and a generalized set of procedures is established. In a case study implementing the analysis procedures, ground noise generated from a static aeroelastic deformed low-boom aircraft increased slightly over that from the undeformed geometry for both undertrack and offtrack angles. Ground noise sensitivities to uncertainties in near field conditions and structural parameters varied significantly with atmospheric profiles. Shifts in confidence interval width in addition to shifts in deterministic values of ground noise were observed while varying atmospheric conditions

    Sonic Boom Pressure Signature Uncertainty Calculation and Propagation to Ground Noise

    Get PDF
    The objective of this study was to outline an approach for the quantification of uncertainty in sonic boom measurements and to investigate the effect of various near-field uncertainty representation approaches on ground noise predictions. These approaches included a symmetric versus asymmetric uncertainty band representation and a dispersion technique based on a partial sum Fourier series that allows for the inclusion of random error sources in the uncertainty. The near-field uncertainty was propagated to the ground level, along with additional uncertainty in the propagation modeling. Estimates of perceived loudness were obtained for the various types of uncertainty representation in the near-field. Analyses were performed on three configurations of interest to the sonic boom community: the SEEB-ALR, the 69o DeltaWing, and the LM 1021-01. Results showed that representation of the near-field uncertainty plays a key role in ground noise predictions. Using a Fourier series based dispersion approach can double the amount of uncertainty in the ground noise compared to a pure bias representation. Compared to previous computational fluid dynamics results, uncertainty in ground noise predictions were greater when considering the near-field experimental uncertainty

    Backshell Radiative Heating on Human-Scale Mars Entry Vehicles

    Get PDF
    This work quantifies the backshell radiative heating experienced by payloads on human- scale vehicles entering the Martian atmosphere. Three underlying configurations were studied: a generic sphere, a sphere-cone forebody with a cylindrical payload, and an ellipsled. Computational fluid dynamics simulations of the flow field and radiation were performed using the LAURA and HARA codes, respectively. Results of this work indicated the primary contributor to radiative heating is emission from the CO2 IR band system. Furthermore, the backshell radiation component of heating can persist lower than 2 km/s during entry and descent. For the sphere-cone configuration a peak heat flux of about 3.5 W/cm(exp. 2) was observed at the payload juncture during entry. At similar conditions, the ellipsled geometry experienced about 1.25 W/cm(exp. 2) on the backshell, but as much as 8 W/cm(exp. 2) on the base at very high angle of attack. Overall, this study sheds light on the potential magnitudes of backshell radiative heating that various configurations may experience. These results may serve as a starting point for thermal protection system design or configuration changes necessary to accommodate thermal radiation levels

    Uncertainty Quantification and Certification Prediction of Low-Boom Supersonic Aircraft Configurations

    Get PDF
    The primary objective of this work was to develop and demonstrate a process for accurate and efficient uncertainty quantification and certification prediction of low-boom, supersonic, transport aircraft. High-fidelity computational fluid dynamics models of multiple low-boom configurations were investigated including the Lockheed Martin SEEB-ALR body of revolution, the NASA 69 Delta Wing, and the Lockheed Martin 1021-01 configuration. A nonintrusive polynomial chaos surrogate modeling approach was used for reduced computational cost of propagating mixed, inherent (aleatory) and model-form (epistemic) uncertainty from both the computation fluid dynamics model and the near-field to ground level propagation model. A methodology has also been introduced to quantify the plausibility of a design to pass a certification under uncertainty. Results of this study include the analysis of each of the three configurations of interest under inviscid and fully turbulent flow assumptions. A comparison of the uncertainty outputs and sensitivity analyses between the configurations is also given. The results of this study illustrate the flexibility and robustness of the developed framework as a tool for uncertainty quantification and certification prediction of low-boom, supersonic aircraft
    • …
    corecore